sl.geologyidea.com
Več

12: Konfiguracije postelj, ki jih ustvarjajo vodni tokovi in ​​veter - Geoznanost

12: Konfiguracije postelj, ki jih ustvarjajo vodni tokovi in ​​veter - Geoznanost


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.


12: Konfiguracije postelj, ki jih ustvarjajo vodni tokovi in ​​veter

Oboroženi napadalec

Invazivna levjada z 18 strupenimi bodicami uničuje morske ekosisteme, kjer je bila predstavljena - v Atlantiku, na Karibih in zdaj v Sredozemskem morju. Njegov boleč pik ni nujno smrtonosen, vendar je dovolj, da prestraši potencialne plenilce. V krajih, kot so Florida, Kuba, Kolumbija in Bahami, so vlade ljudi spodbujale, naj začnejo ubijati ali jesti ribe.

Grožnja pod valovi: invazivne morske vrste


Prvič, kako lahko naredim svoj dom bolj energetsko učinkovit?

Preden izberete vetrni sistem za svoj dom, razmislite o zmanjšanju porabe energije tako, da bo vaš dom ali podjetje energetsko učinkovitejše. Začnete lahko tako, da se naučite, kako se električna energija uporablja v domovih v ZDA. Zmanjšanje porabe energije bo znatno znižalo račune za komunalne storitve in zmanjšalo velikost domačega sistema obnovljivih virov energije, ki ga potrebujete. Če želite doseči največjo energetsko učinkovitost, morate uporabiti celoten objekt. Na svoj dom glejte kot na energetski sistem z medsebojno povezanimi deli, ki delujejo sinergistično in prispevajo k učinkovitosti sistema. Od izolacije v stenah vašega doma do žarnic v napeljavah obstaja veliko načinov za povečanje učinkovitosti vašega doma.

  • Izboljšanje izolacije in tesnjenje puščanja zraka v domu sta dva najhitrejša in najcenejša načina za zmanjšanje porabe energije. Hiše, zgrajene pred letom 1950, porabijo približno 60% več energije na kvadratni čevelj kot hiše, zgrajene leta 2000 ali pozneje.
  • Če 8 ur na dan znižate termostat za 7 ° do 10 ° F, lahko prihranite kar 10% pri ogrevanju in hlajenju.
  • Zunanja ali notranja nevihtna okna z nizko emisijo lahko prihranijo 12 do 33% stroškov ogrevanja in hlajenja, odvisno od vrste okna, ki je že nameščeno v domu. [5]
  • Z zamenjavo petih najpogosteje uporabljenih svetilk ali žarnic v vašem domu z modeli, ki so zaslužili ENERGY STAR, lahko vsako leto prihranite 75 USD.
  • Ko kupujete aparate, poiščite oznako Energy Star®. Ameriška agencija za varstvo okolja in ameriško ministrstvo za energijo sta naprave Energy Star® označila za najbolj energetsko učinkovite izdelke v svojem razredu. [6]

Za več informacij o tem, kako narediti vaš dom energetsko učinkovit, glejte Varčevanje z energijo: Nasveti za varčevanje denarja in energije doma.


Naredi sam: naredi elektriko z dvoriščnim tokom

Tukaj je poenostavljen in hkrati spodbuden način, da si z vodnim potokom v zadnjem delu hiše naredite vodno elektrarno. Ideja je vzeta iz članka Off-Grid.net. Pravzaprav ideja sploh ni nova: celo Rimljani so jo pred tisočimi leti uporabljali za napajanje svojih mehanskih sistemov, ki čeprav so bili mehanski, sploh niso bili primitivni in so takrat zagotavljali precej dobro raven udobja.

Glavna ideja je preprosta: poiščite reko, poskrbite, da bo padla dovolj naglo, da bo imela potrebno hitrost in hitrost, da zavrtite turbino, ter naredite potreben sistem za cevovod in nadzor pretoka.

Gorska in hribovita območja so najbolj primerna za to vrsto obnovljive energije. Prvi parameter, ki ga morate upoštevati, je višina, s katere želite, da vam voda pada. Če je višja od 3 m, imate mikrohidroturbina z visoko glavo. Če je razdalja med 0,6 in#8211 3 m, imate hidroturbina z nizko glavo. Prednost bi morali dati prvemu, ker se moč potrebnega toka precej zmanjša. Hidroturbine z visoko glavo nadomeščajo pomanjkanje prostornine z močjo gravitacije.

Izmeriti morate velikost cevi in ​​pretok vode, ki prihaja iz tega toka. Za to obstaja več načinov in tukaj bom citiral Off-Grid.net, ker je njihova razlaga najboljša (boljšega nisem mogel najti):

“ 1. The metoda vedra ki zavira vaš tok, da preusmeri njegov tok v vedro ali posodo. Hitrost polnjenja posode je pretok. Če ste uporabili vedro s 5 galonami in je bila napolnjena v eni minuti, bi bil vaš pretok 5 litrov na minuto.

2. Dokler voda ne teče hitro in/ali po teletih, jih lahko uporabljate metoda s ponderiranim plovcem. To vključuje merjenje globine vodne poti po širini. Za to boste potrebovali: pomočnika, merilni trak, merilo, tehtani plovec (zadostuje plastična steklenica do polovice napolnjena z vodo), štoparico in grafični papir. Nato za izračun pretoka prečnega prereza plovne poti pri najnižjem vodostaju morate:

  1. Poiščite najbolj enakomerno globino in najravnejši odsek vodne poti
  2. Izmerite širino vodne poti na najožjem mestu
  3. Merilo uporabite navpično za merjenje globine v korakih po 1ft. Za označevanje prirastkov boste morda želeli uporabiti niz, raztegnjen navzgor.
  4. Meritve narišite na papir, da dobite diagram prečnega prereza vodne poti
  5. Izračunajte površino vsakega odseka tako, da določite površine pravokotnikov (površina = dolžina ia širina) in desnih trikotnikov (površina = ½ osnove iv) višine v vsakem odseku
  6. Na odseku, ki ste ga izmerili, označite točko najmanj 20ft vzvodno
  7. Od tam sprostite svoj utežni plovec in čas, koliko časa traja, da dosežete izmerjeni del vodne poti. Pazite, da tehtani plovec nikoli ne vleče po strugi.
  8. Če želite doseči hitrost pretoka, razdaljo med obema točkama delite s sekundami, ki jih je plovec potreboval za vožnjo. Če to storite večkrat in uporabite povprečje, boste dobili boljšo meritev
  9. Pomnožite povprečje hitrosti s površino prečnega prereza toka
  10. Nazadnje morate upoštevati hrapavost struge plovne poti. Rezultate boste morali pomnožiti z 0,6, za številne hrapave kamne na dnu, 0,7, za le majhne do srednje velike kamne na dnu ali 0,8, za gladko peščeno dno.

Ko izračunate pretok in višino, lahko ocenite izpad električne energije za standardni sistem mikrohidroenergije, ki ima približno 53 -odstotni izkoristek. Če želite to narediti, pomnožite neto višino s tokom in nato delite z 10, da dobite izhod v vatih.

neto glava [(stopala) ià flow €⠀ pretok (gpm)] i · 10 = W ”

Torej, tukaj je! Sistem za proizvodnjo električne energije iz vašega rečnega toka! Skoraj nima vpliva na okolje in vas lahko delno ali v celoti osvobodi omrežja (odvisno od vaših potreb in hitrosti vode).


Vpliv konfiguracije vijaka na porazdelitev velikosti delcev zrnc, ki nastanejo z dvojno vijačno granulacijo

Dvojne vijačne granulacije (TSG) so po mnenju različnih raziskovalnih skupin privlačna tehnologija za neprekinjeno mokro granuliranje. V nasprotju z granulacijo v fluidiziranem sloju imajo zrnca, proizvedena s to tehniko, običajno široko in multimodalno porazdelitev velikosti delcev (PSD), kar ima za posledico suboptimalne lastnosti pretoka. Cilj trenutne študije je bil oceniti vpliv konfiguracije vijaka granulatorja na PSD zrnc, ki jih proizvaja TSG. Poskusi so bili izvedeni s 25-milimetrskim dvovrtalnim granulatorom, ki se vrti skupaj in je del sistema ConsiGma ™ -25 (popolnoma neprekinjena linija za proizvodnjo praška do tablete podjetja GEA Pharma Systems). Poleg vijačnih elementov, ki se običajno uporabljajo za TSG (transportni in gnetilni elementi), so bile raziskane tudi alternativne izvedbe vijačnih elementov (zobni mešalni elementi (TME), vijačni mešalni elementi (SME) in rezkarji) z uporabo formulacije α-laktoze monohidrata, granulirane z destilirano vodo. Granulacija s samo transportnimi elementi je povzročila široko in multimodalno PSD. Z uporabo gnetnih elementov bi lahko širino PSD delno zožili, porazdelitev tekočine pa bi bila bolj homogena. Kljub temu je bil pridobljen še precejšen delež prevelikih aglomeratov. Izvajanje dodatnih elementov za gnetenje ali rezalnikov v zadnjem delu konfiguracije vijaka ni bilo koristno. Poleg tega je granulacija samo s TME ali MSP imela omejen vpliv na širino PSD. Obetajoči rezultati so bili doseženi s kombinacijo gnetilnih elementov z MSP, saj je bil pri teh konfiguracijah PSD ožji in premaknjen na velikostne dele, primerne za tabletiranje.

Ključne besede: Neprekinjena obdelava Porazdelitev velikosti delcev Razumevanje procesa Konfiguracija vijaka Dvojna vijačna granulacija.


Vpliv turbulenc na vlečenje trdnih diskov in simulatorjev turbin v vodnem toku

Laboratorijski poskusi so bili uporabljeni za raziskovanje učinkov turbulence na upor tako trdnih diskov kot simulatorjev poroznih diskovnih turbin. Ti diski so bili predstavljeni turbulentnim tokom v gravitacijskem vodnem toku, z različnimi stopnjami intenzivnosti turbulenc in lestvicami integralne dolžine. Turbulenca je nastala z uporabo treh različnih konfiguracij mreže, ki so proizvedle intenzitete in lestvice, primerljive s prejšnjimi študijami vetrovnika. Meritve upora so bile izvedene z diski dveh različnih premerov in poroznosti z rešetkami navzgor in brez njih. Eksperimentalni rezultati so pokazali, da so koeficienti upora pri vseh preizkušenih diskih močno odvisni tako od intenzivnosti turbulenc kot od integralne lestvice dolžin. Pri majhnih lestvicah integralne dolžine glede na disk so se koeficienti upora upognili za intenzitete turbulence več kot 13 %, s povečanjem koeficienta upora za okoli 20 % v primeru nizke intenzivnosti. Poskusi z intenzivnostjo turbulenc 10 % so pokazali najmanjše koeficiente upornosti, ko je bilo razmerje premera integralne dolžine do premera diska okoli 50 %. Pri delovanju v turbulentnih tokovih z različnimi značilnostmi se torej pričakujejo pomembne razlike v koeficientu zračnega upora.

To je predogled naročninske vsebine, dostop prek vaše ustanove.


Vžig lesenih ograjnih sklopov, izpostavljenih neprekinjenim vetrnim požarnim tušem

Študije po požaru, ki jih je izvedel NIST o požaru Waldo Canyon v Koloradu (2012), so pokazale, da so sklopi lesenih ograj občutljivi na vžig zaradi požara v požarih Wildland – Urban Interface, vendar nikoli ni bilo nobenega eksperimentalnega preverjanja tega vžigalni mehanizem. Posledično je bila izvedena vrsta poskusov, s katerimi se je preučilo vžig lesenih ograjnih sklopov, ki so bili izpostavljeni neprekinjenim, vetrnim pogonom. Ograje ograj zahodne rdeče cedre in rdečega lesa so bile izpostavljene neprekinjenim ognjem, ki jih poganja veter, in jih je ustvaril NIST-ov generator neprekinjenega napajanja z neprekinjeno krmo, nameščen v objektu za raziskovanje požara na Inštitutu za gradbene raziskave na Japonskem. Za simulacijo drobnih goriv, ​​ki so lahko prisotna v bližini ograjnih sklopov, so bile v bližini ograjnih sklopov postavljene posušene razrezane gredice iz trdega lesa. Sklopi ograj so bili različno dolgi in usmerjeni v polje vetra, da bi simulirali vrsto konfiguracij, na katere lahko naletimo v realnih situacijah. V teh poskusih so bili uporabljeni tako ravni kotni kotni deli ograjnih sklopov. Mere odsekov ravnih lesenih ograj so bile različne od 0,91 m širine, 1,83 m višine do 1,83 m širine in 1,83 m višine. Glede na vogalne odseke so bile uporabljene dimenzije 0,91 m do 0,91 m do 1,83 m. Vse obravnavane konfiguracije so povzročile goreč vžig (FI) postelj za zastirko in poznejšo FI sklopov lesenih ograj. Končno so bili zaključeni tudi poskusi, s katerimi se je ugotovilo, ali lahko vetrni ognjeni tuši proizvajajo FI ograjnih sklopov brez prisotnosti drobnih goriv v bližini odsekov ograje. Firebrands so proizvedli tleči vžig (SI) ograjnih sklopov brez prisotnosti drobnih goriv in SI prešli v FI pod uporabljenim vetrnim poljem. Ti poskusi so pokazali, da so sklopi lesenih ograj občutljivi na vžig zaradi vetrnih ogenj.

To je predogled naročninske vsebine, dostop prek vaše ustanove.


Pipa.jpg

Leta 1994 je država Arizona sprejela Mednarodni vodovodni standard, ki zahteva vodovodne napeljave z nizko porabo vode pri novogradnji in za zamenjavo napeljave. Enotni kodeks vodovodne napeljave v Arizoni določa zahteve glede tlaka in omejitve največjih pretokov in količin vode, ki jo porabijo vodovodne napeljave. Sedanji zakon zahteva vgradnjo stranišč z 1,6 galonami na izplakovanje, pisoarjev z 1,0 galono na splakovanje ter pip in tušev s hitrostjo 2,5 galone na minuto pri novogradnji in pri zamenjavi napeljave v obstoječi gradnji. Za zamenjavo ali novogradnjo so na voljo različna stranišča z nizko porabo vode, prhe za prho, prezračevalniki pip in druge naprave za varčevanje z vodo, nekatere pa so opisane spodaj.

Po podatkih EPA povprečno gospodinjstvo vsako leto izgubi več kot 10.000 litrov vode zaradi puščanja, kar je enaka količina vode, ki je potrebna za pranje 280 kosov perila, za prhanje 600 ali za zadovoljevanje povprečne potrebe družine po vodi za mesec dni. Nekatera puščanja vode so počasna in jih je težko zaznati, kljub temu pa se lahko tudi najmanjša puščanja hitro povečajo. Vodnik za pametni dom vam lahko pomaga najti in odpraviti puščanje, ki vam izčrpava proračun.

WC

Po podatkih EPA lahko samo stranišča porabijo 27% gospodinjske vode. Poraba vode v straniščih pred letom 1980 je pogosto presegala 4 litre na izpiranje, v straniščih pred letom 1990 pa več kot 3,5 litra na izpiranje. Datum izdelave stranišča je običajno na spodnji strani pokrova rezervoarja ali na samem rezervoarju. Sedanja Arizona Enotna vodovodna koda (naslov 45, člen 12) zahteva, da stranišča uporabljajo največ 1,6 litra na izpiranje. Ta znesek se lahko močno zmanjša z namestitvijo novejših stranišč z visoko učinkovitostjo (HET). Ne glede na to, ali gre za nove ali stare modele, je odpravljanje puščanja takoj, ko se pojavi, zelo pomembno, saj lahko zaradi puščajočih stranišč izgubijo do 200 litrov vode na dan.

Netesna stranišča lahko izgubijo 200 litrov vode na dan, zato je pomembno, da preverite puščanje. Bodite pozorni in poslušajte, morda boste slišali, kako se voda premika iz rezervoarja v posodo, kar ni povezano z izpiranjem. Enostaven način za odkrivanje puščanja je, da v rezervoar odložite nekaj kapljic tekočega barvila za hrano, če se barvilo pojavi v straniščni školjki, ventil morda pušča ali loputa morda ni pravilno nameščena v rezervoar.

Stranišča, ki so v skladu s standardom kode Arizone za 1,6 litra ali manj na izpiranje, se včasih imenujejo stranišča z ultra nizkim pretokom (ULF). Stranišča z visokim izkoristkom (HET) presegajo standard in uporabljajte le 1,28 gpf, prihranek 20%. Visoko učinkovit WC lahko prihrani 4000 litrov vode na leto.

EPA specifikacija za visoko zmogljivo straniščno posodo za vodoodporne črpalke povzema merila za stranišča z enim in dvojnim izpiranjem z vodo. Dokument vsebuje tudi celovitost polnilnih ventilov, nastavljivost obroča rezervoarja in protokole za preskušanje zmogljivosti napeljave.

Stranišče z dvojnim izpiranjem ima dve možnosti za izpiranje: eno, ki porabi 0,8 do 1,2 litra na izpiranje za tekoče odpadke in tisto, ki uporablja 1,6 litra na izpiranje za trdne odpadke. Ta tehnologija "pol izpiranja" in "polnega izpiranja" lahko zmanjša porabo vode za do 67 odstotkov.

Ta stranišča imajo senzor, ki uporablja žarek infrardeče svetlobe za aktiviranje splakovanja.

V nasprotju s stranišči, ki za izpiranje vsebine uporabljajo rezervoar za vodo in gravitacijo, stranišča brez rezervoarja porabijo manj vode na izpiranje. Uporabljajo merilnik temperature, ki je naprava, ki sprosti odmerjeno količino vode v stranišče, nato pa se zapre nazaj. Stranišča z merilniki temperature so najpogosteje vidna v javnih straniščih in poslovnih prostorih.

Pisoarji z visokim izkoristkom so v skladu s kodo standarda Arizona, ki vsebuje manj kot 1 galono vode na izpiranje. Pisoarji z zelo majhno količino, včasih imenovani "pisoarji za umivanje", porabijo med 0,5 in 1 galono vode na izpiranje. Odvisno od znamke ali modela je mehanizem za izpiranje lahko nameščen na vrhu napeljave, na steni nad vpenjalom ali pa je samodejen.

Ti pisoarji imajo senzor, ki uporablja žarek infrardeče svetlobe za aktiviranje splakovanja. Tipala zaznajo, kdaj je bil pisoar uporabljen (ali ko je nekdo stal pred njim in se odmaknil), kar aktivira izpiranje. Kontrolniki so zasnovani tako, da preprečijo aktivacijo mimoidočih in se po uporabi ponastavijo za namestitev naslednje osebe. Uporabniku ni treba stopiti v stik z napravo za aktiviranje, kar je lahko v pomoč invalidnim osebam in pomaga tudi pri preprečevanju širjenja bolezni. Kompleti za nadgradnjo so na voljo za domačo uporabo.

Pisoarji brez vode ne uporabljajo vode za izpiranje, čeprav za čiščenje potrebujejo majhno količino. Pisoar brez vode lahko prihrani do 45.000 litrov vode na leto. Pisoarje brez vode običajno najdemo v velikih kompleksih, kot so žogice, poslovne stavbe in letališča. Za preprečevanje vonjav v u ovinku se uporablja vložek in tekoča tesnilna masa. Kartušo je treba očistiti z majhno količino vode in jo občasno zamenjati.

SLOVENŠČINE IN ORODJE ZA TUŠ

Po podatkih EPA lahko pipe in tuši uporabljajo 33 odstotkov gospodinjske vode. Ta znesek se lahko močno zmanjša z namestitvijo varčnih modelov. Enotna vodovodna koda Arizone zahteva, da pretok pip in tušev ne presega 2,5 litra na minuto. Stavbe, starejše od leta 1990, morda nimajo vodovodnih napeljav, ki varčujejo z vodo, pretok pa je lahko več kot 5 litrov na minuto. Sledi opis nekaterih novejših pip, ki so na voljo, in naprav, ki pomagajo zmanjšati porabo vode v pipah.

Aeratorji z nizkim pretokom so izjemno učinkoviti pri zmanjševanju porabe vode. Odzračevalnike lahko pritrdite na starejše pipe z veliko prostornino, da zmanjšate njihov pretok na 2,5 gpm ali manj. Odzračevalniki dodajajo zrak v tok, kar povzroči pretok, podoben razpršitvi, hkrati pa vzdržuje tlak vode. Nekateri aeratorji lahko zmanjšajo pretok vode na 0,5 gpm ali manj, kar je le del stroškov zamenjave pip. Nazivni tok prezračevalnika je natisnjen na njegovi strani.

Samodejne pipe preprečujejo iztekanje vode, ko pipe ne uporabljate. Te pipe imajo senzor, ki uporablja žarek infrardeče svetlobe za nadzor pretoka pipe. Tok se začne, ko so roke položene neposredno pod vpenjalno napravo, in se ustavi, ko roke odstranimo. Samodejne pipe prihranijo 10-50 odstotkov vode, ki jo porabijo ročne pipe. Te pipe so v pomoč ljudem, ki imajo težave s prijemom ali obračanjem gumbov.

Merilne (ali samozapiralne) pipe dovajajo izmerjeno količino vode za določen čas, tako da se pipa samodejno izklopi, ko so dosežene vnaprej določene meje. To odpravlja izgubo vode zaradi nepotrebnega pretoka.

Medtem ko je pretok standardnih tušev 2,5 gpm, lahko najdete tuševe s pretokom že pri 1,2 gpm. Te prhe z nizkim pretokom delujejo tako, da v vodni tok vbrizgajo zračne mehurčke, kar povzroči pretok, podoben pršenju, hkrati pa vzdržuje tlak vode.

Ta vrsta prhe zmanjša pretok vode na kapljico, ko voda doseže določeno temperaturo, s čimer prihrani toplo vodo do vstopa v tuš. Tuš ima ročaj ali puščico za sprostitev tople vode, ko je uporabnik pripravljen. Ta naprava prihrani vodo in energijo za ogrevanje vode.

Ta tuš ima ročaj, ki upočasni pretok vode do kapljic, medtem ko se uporabnik namoči, se obrije ali šamponira. Ko se pretok nadaljuje, je temperatura vode enaka, kot je bila pred začasnim izklopom.

OGREVANJE VODE & amp. ČIŠČENJE

OGREVANJE VODE

V tradicionalnem sistemu za pripravo tople vode grelnik vode segreva vodo, ki nato teče iz grelnika vode v vsako pipo ali prho v domu ali objektu. Po vsakem nanosu voda ostane v ceveh, kjer se ohladi. Naslednjič, ko je potrebna topla voda, se hladni vodi v ceveh pogosto dovoli teči, dokler ne bo na voljo topla voda, pri čemer se na leto porabi med 8.000 in 20.000 galonov. Spodaj so opisani sistemi, ki takoj po potrebi (ali takoj) zagotavljajo toplo vodo.

V teh sistemih voda v vodovodu za toplo vodo kroži med pipo in grelnikom vode, tako da voda ostane vroča. To preprečuje prakso puščanja vode po odtoku med čakanjem na ogrevano vodo. Sistem je sestavljen iz vodovoda za toplo vodo, ki gre od grelnika vode do najbolj oddaljene napeljave in nazaj do grelnika vode, črpalke za recirkulacijo vode, termostata, izolacijskega ventila in povratnega ventila. Sistemi lahko vključujejo časovnik, ki ga je mogoče nastaviti za določen čas dneva, ali stikalo za zagon kroženja vode. Znaten prihranek vode je mogoče doseči, zlasti ko mora topla voda prepotovati veliko razdaljo do najbolj oddaljene napeljave. Po ocenah proizvajalcev povprečen dom vsako leto izgubi med 11.000 in 15.000 litrov vode, saj ljudje čakajo na toplo vodo. Pri novogradnji so včasih potrebni ponovni obtočni sistemi. Rabati in popusti so lahko na voljo pri prenovi obstoječih domov in zgradb.

Grelnik vode "na mestu uporabe" je nameščen neposredno pod umivalnikom ali povsod, kjer je potrebna topla voda in takoj proizvede toplo vodo.

Grelnik vode brez rezervoarja je lahko nameščen na mestu uporabe in zagotavlja neomejeno, takojšnjo toplo vodo. Nima rezervoarja za shranjevanje, modeli plina pa pogosto nimajo stoječih pilotnih luči, s čimer se prihrani energija.

ČIŠČENJE VODE

Mehčalci vode iz vode odstranijo "trde" minerale, kot sta kalcij in magnezij, ki vodijo do usedlin mila na kadi in umivalnikih, dolgočasnega perila, madežev na posodi in luskastih usedlin na napeljavah, grelnikih vode in ceveh. V običajnem mehčalcu voda zamenja "trde" ione kalcija in magnezija za "mehke" natrijeve ione, ki jih vsebujejo kroglice iz sintetične smole v posodi za mehčalec. Ko je zaloga natrija v smolnih kroglicah izčrpana, se napolni s povratnim izpiranjem raztopine vode/soli (slanice) skozi kroglice smole. Ta postopek, imenovan "regeneracija", porabi med 15 in 120 litrov vode na vsakih omehčanih 1.000 litrov, odvisno od vrste enote.

Regeneracija mehčalca vode

Veliki objekti pogosto nadzorujejo frekvenco regeneracije mehčalca s časovniki ali vodomeri, ki sprožijo proces regeneracije, ko je bila obdelana vnaprej določena količina vode. Najboljši sistemi imajo kontrole, ki spremljajo kakovost vode in sprožijo proces regeneracije, ko postane mehka voda rahlo trda. V manjših objektih mehčalce servisira podjetje za čiščenje vode, njihove sestavne dele pa regenerirajo zunaj lokacije v obratu prodajalca.

Želite izvedeti več o mehčalcih vode, vprašanjih slanosti in rešitvah ter kje poiskati strokovnjake za vodo, ki imajo certifikat o trajnosti mehčalcev vode? Oglejte si spletno stran združenja za kakovost vode v Arizoni.

Obstaja več načinov čiščenja vode. Dve običajni metodi sta reverzna osmoza in filtriranje. Pri reverzni osmozi (RO) voda teče skozi ultra fino membrano, ki ločuje čisto vodo od slanice. RO odstranjuje nitrate, sulfat, natrij in skupno raztopljene trdne snovi. Gospodinjske enote RO zaradi nizkega povratnega tlaka izkoristijo le 5 do 15 odstotkov vode, ki vstopi v sistem. Z drugimi besedami, za pripravo 5 litrov prečiščene vode se zavrže 40 do 90 litrov vode. Filtriranje vode običajno poteka z ogljikovimi filtri, nameščenimi v pipah, ledomatih in drugih napeljavah. Oglje ima veliko porozno površino, ki absorbira usedline in nečistoče, kot so plini, klor in organska onesnaževala, ki imajo nezaželene okuse ali vonjave. Aktivno oglje je bilo toplotno obdelano, da se povečajo pore in s tem površina. Ogljeni filtri ne odstranijo nitratov, bakterij ali raztopljenih mineralov ali soli. Za vodo z veliko onesnaževalci bi lahko bila koristna enota, ki združuje reverzno osmozo in filtriranje oglja.

Testne komplete za spremljanje vode običajno uporabljajo lastniki stanovanj z vodnjaki ali če obstaja sum na kontaminacijo vode zaradi nezaželenega okusa, vonja in/ali barve. Kompleti, ki so enostavni za uporabo, preskusijo vodo za skupne koliformne bakterije, nitrate, skupno raztopljene trdne snovi in ​​ravni pH.

OGREVANJE & HLAJENJE

HLADILNI STOLPI

Hladilni stolpi se uporabljajo za obsežne klimatske sisteme in za hlajenje krožne vode, ki se uporablja v rafinerijah nafte, kemičnih obratih in elektrarnah. Ti sistemi so eden največjih nestanovanjskih porabnikov vode. Voda, ki pade skozi stolp, se zaradi izhlapevanja ohladi in nato vrne na vrh stolpa. Voda, ki pada v kotlino, je v povprečju za 10 stopinj F hladnejša od vode, ki se vrne na vrh. Stolpi se razlikujejo po velikosti od majhnih strešnih enot do zelo velikih struktur, višji kot je stolp, večji je padec temperature.

Voda se iz hladilnega stolpa izgubi z izhlapevanjem, odnašanjem in odzračevanjem (voda, ki se uporablja za odnašanje škodljivo škodljivih mineralov, znanih tudi kot izpihovanje). Voda, ki jo je treba sistemu dodati, da nadomesti te izgube, se imenuje "voda za ličenje". Izhlapevalne izgube iz hladilnega stolpa je mogoče oceniti na 3 litre na minuto na vsakih 100 ton hlajenja. To pomeni, da stolp ali kondenzator, ki zagotavlja 500 ton hlajenja, v 24-urnem obratovalnem obdobju izhlapi skoraj 21.600 litrov.

Eden glavnih načinov za izboljšanje učinkovitosti vode v hladilnem stolpu je zmanjšanje količine odzračevanja (voda, ki se uporablja za odnašanje mineralov). Porabo vode lahko zmanjšate za 20% ali več, če večkrat krožite vodo skozi stolp, preden pride do odzračevanja. To bo povzročilo višje koncentracijsko razmerje (ali cikle koncentracije). Razmerje koncentracije hladilnika je merilo učinkovitosti rabe vode. Višje kot je razmerje, bolj učinkovit je poraba vode.

Odzračevanje hladilnega stolpa bi lahko uporabili za namakanje rastlin, ki niso občutljive na visoko vsebnost soli. Druga možnost ponovne uporabe je pretok odtoka v čistilne naprave. Ne samo, da bi te prakse prihranile vodo, lahko bi prihranile denar tudi z zmanjšanjem stroškov vode in kanalizacije.

Uporaba žveplove kisline v programu kemične obdelave hladilnega stolpa preprečuje kopičenje vodnega kamna, zato lahko voda večkrat kroži, preden jo zavržemo ali pred dodajanjem ličila. Če obdelava z žveplovo kislino ni izvedljiva ali izvedljiva, lahko namesto tega nadzirate pH sistema in preprečite nastanek lestvice. Topnost karboksilatov je manjša od žveplove kisline, vendar še vedno več kot dvakrat kot brez obdelave.

Ta naprava samodejno nadzoruje izpihovanje glede na največje cikle koncentracije, ki jih je mogoče varno doseči. Nastala prevodnost (običajno merjena kot mikroSiemens na centimeter, uS/cm). Regulator prevodnosti lahko neprekinjeno meri prevodnost vode v hladilnem stolpu in izpustne vode le, če je presežena nastavljena vrednost prevodnosti.

IZPLAČNI HLADILNIKI

Hlajevalniki z izhlapevanjem (imenovani tudi močvirni hladilniki) povečujejo vlažnost vstopnega zraka, ki se vleče v stavbo, kar znižuje njeno temperaturo. Po kratkem času delovanja ponovna kroženje vode v hladilniku za izhlapevanje prevzame temperaturo vstopnega zraka. Ta temperatura je teoretično najnižja temperatura, do katere se lahko vhodni zrak ohladi. Glavna priložnost za ohranjanje vode, ki jo uporabljajo hladilni hladilniki, je zmanjšanje pretoka odtočne vode, ki se odvaja iz hladilnikov. Običajno je za pravilno delovanje potreben le zelo majhen tok izčrpane vode, vendar se na žalost pogosto odstrani prevelika količina vode. Ne samo, da ta odpadna voda vpliva na učinkovitost hlajenja hladilnika, ker voda ne postane čim bolj hladna. Tri običajne vrste hladilnikov z izhlapevanjem so hladilniki z recirkulacijo, tako imenovani hladilniki "s črpalko za izmet" in hladilniki brez recirkulacije ali "enkrat skozi". Odzračevanje iz vseh vrst hladilnikov z izhlapevanjem se lahko uporabi za namakanje rastlin, ki niso občutljive na visoko vsebnost soli v vodi.

Pri tem tipu hladilnika se voda, ki steče z blazinic, večkrat ujame in reciklira, preden jo zavrže. Majhna količina odzračevanja je potrebna za nadzor koncentracij onesnaževal v recirkulirani vodi in preprečevanje poškodb hladilnih blazinic, s čimer ji omogoča učinkovito delovanje. Odzračevalne ventile lahko nastavite tako, da izpuščajo najmanjšo potrebno količino vode. Recirkulacijski hladilni uparjalniki porabijo približno 3 litre vode na uro delovanja.

Sorta "črpalka za odlaganje" samodejno izprazni in napolni posodo za zbiranje vode vsakih nekaj ur delovanja.

V suhem podnebju se lahko oprema hladi z vodo "enkrat skozi" ali z enim prehodom. To je najbolj vodno intenziven proces hlajenja, ker se voda po prehodu in hlajenju opreme pogosto zavrže. Oprema, ki jo lahko hladimo s pretočno vodo, vključuje: razmaščevalce, usmernike, hidravlično opremo, rentgenske aparate, kondenzatorje, viskozne kopeli, klimatske naprave, zračne kompresorje, hidravlične stiskalnice, varilce in vakuumske črpalke. Mnoge vrste opreme z vodnim hlajenjem je mogoče zamenjati z energetsko učinkovitimi, zračno hlajenimi modeli. Porabo vode lahko zmanjšamo tudi s ponovnim kroženjem, z uporabo vode iz virov, ki niso pitni, in z uporabo enkratne vode za druge namene, kot je namakanje krajine ali hladilni stolp. Te prakse lahko prihranijo ne samo vodo, ampak tudi prihranek denarja z zmanjšanjem stroškov vode in kanalizacije. Na območjih aktivnega upravljanja v Arizoni ADWR prepoveduje uporabo hladilne vode za enkratno uporabo v industrijah, ki imajo lastne vrtine, razen če se voda ponovno uporabi.

Kotli se uporabljajo v velikih ogrevalnih sistemih ali v industriji, kjer se uporabljajo velike količine procesne pare. V kotlovski sistem se doda voda, da se nadomestijo izgube vode in nadomesti izgubljena voda, ko je kotel prepihan, da se odstranijo morebitne nakopičene trdne snovi. Kjer je to praktično, je treba zajeti kondenzat pare in ga vrniti v kotel za ponovno uporabo kot dolivna voda. Sistem povratka kondenzata prihrani vodo, zmanjša stroške predhodne obdelave dovodne vode kotla in zmanjša porabo energije. Obratovalne stroške kotla je mogoče zmanjšati do 70 odstotkov z namestitvijo sistema vračanja kondenzata. Poraba vode v kotlovskih sistemih je odvisna od velikosti sistema, količine porabljene pare in količine vračanja kondenzata.

Razširitveni rezervoar zagotavlja zračno blazino za širjenje vode med segrevanjem. To prihrani vodo na dva načina: 1) preprečuje, da bi ventil za razbremenitev tlaka odpiral in izpuščal vodo, da bi znižal tlak, in 2) odpravil potrebo po uporabi hladne vode v mešalnih ventilih za hlajenje izpihovanja, ker kondenzira in ohladi v ekspanzijski posodi. V jekleni ekspanzijski posodi se zrak in voda dotikata. V ekspanzijski posodi tipa mehurja sta zrak in voda ločena z membrano.

VLAŽILNIKI

Vlažilci se uporabljajo za dodajanje vlage zraku z izhlapevanjem, s čimer se poveča relativna raven vlažnosti. Obstajata dve glavni vrsti vlažilcev: sobni vlažilci in centralni vlažilci. Sobni vlažilci zraka so samostojne enote, ki običajno niso priključene na vodovodne napeljave. Njihovi rezervoarji se polnijo ročno. Centralni vlažilci so običajno priključeni na sistem centralnega ogrevanja in vodovodne napeljave. Njihovi rezervoarji se samodejno napolnijo.

Humidifiers that have a continuous bleed-off system waste water. In these humidifiers, a constant stream of water leaves the reservoir and enters the sewer system at the same time a constant stream of potable water fills the reservoir. Recirculating humidifiers do not continuously drain and replace water. There are concerns about the possibility that recirculating humidifiers may contribute to “sick building syndrome.” An alternative would be to reuse the discarded water for another purpose, such as irrigating landscapes, rather than sending it to the sewer. Another option is to adjust the humidifiers to discharge the minimum amount of water necessary and avoid excessive bleed-off. Timers can be used to turn humidifiers on or off based on seasonal needs, or to control when water is pumped out of the reservoir to remove mineral build up.

Mist cooling systems have become available to businesses and homeowners as an outdoor cooling option in regions with high temperatures and low humidity. Water is pumped through the system and released in a fine spray which evaporates, forming cool barriers against hot, dry air. Each misting nozzle uses about half a gallon of water per hour. To conserve water, the systems should be operated only when people are using the area. Some systems have sensors to turn misters off when no one is present, or on/off switches that can be activated by customers as needed. It is also desirable to use misters with nozzles than can be independently controlled, to direct nozzles properly so that the system only cools the area intended, and to turn off misters when it is too windy or humid for them to work well.

LAUNDRY

DOMESTIC LAUNDRY

Washing laundry is very water intensive, using approximately 25 percent of a household’s indoor water use. Conventional top-loading washing machines use 39 to 43 gallons of water per load. High efficiency models such as front-loading washers can greatly reduce water use. Small machines (those under 4.0 cubic feet) that use less than 6.5 gallons of water per cubic foot can reduce water use by up to 50 percent. For additional information see: Water and Energy-Saving Tips for Clothes Washers Or, visit the EPA Water Sense and Energy Star websites to find water-efficient clothes washers.

Front-loading washers, also known as horizontal axis (H-axis) washers,are the most efficient washers available, using less than half the water of older, top-loading models. Front-loading washers tumble clothes through a small amount of water instead of using a central agitator in a full tub of water. Because they are only partially filled, they use less water and less energy for heating water. They also use faster spin speeds to extract more water from clothes, thereby reducing dryer time and energy use. The estimated savings per household is approximately 7,000 gallons a year.

Advanced Top-loading Clothes Washers

Advanced top-loading washers use sophisticated wash systems to flip or spin clothes through a reduced stream of water. Many have sensors to monitor incoming water temperature closely. They also rinse clothes with repeated high-pressure spraying instead of soaking them in a full tub of water. These water-saving, top-loading washing machines use an average of 25 gallons per wash compared to the average of 40 gallons per wash for conventional top-loading machines.

COMMERCIAL LAUNDRY

Commercial laundry equipment can be found in hotels, motels, resorts, hospitals and other facilities for washing linens, uniforms, and other items. Prior to regulations enacted in 2005, commercial laundromats often used residential style, top-loading washing machines that were not bolted to the ground. Laundromats are now switching to horizontal-axis and multi-capacity load washing machines that are secured to the ground. For additional information see: Water and Energy-Saving Tips for Commercial Laundry Facilities and Energy Star Commercial Clothes Washers.

The most common instituion-size washing machine is the washer-extractor, which can handle 25 to 400 dry pounds per load. A rotating drum agitates the laundry during washing and rinsing cycles, and spins at high speeds to extract the water. The machines refill with water for each new cycle. There is no internal recycling all water used is discharged to the sewer. Typical water consumption for washer-extractors is 2.5 to 3.5 gallons per pound of dry laundry.

The continuous-batch washer or “tunnel” washer, commonly used in Europe, has recently been installed in many U.S. laundries. In contrast to conventional washers which refill with water for each cycle, continuous batch washers reuse rinse water from all but the first rinse. The washers have one or more modules for each process step, and the laundry items pass automatically from one module to the next. Significant water conservation is achieved due to the use of counter-current flows. Properly operated installations can save 60-70 percent of the volume of water and steam required by washer extractors.

Laundry wastewater reclamation systems recycle wash water. They capture, filter, and treat the water so it can be reused in the next load. A simple recycle system (one that does not treat the reclaimed water) collects discharge from the final rinse of one load and uses it in the first flush of the next load, saving about 10-35 percent. A complex recycling system (one that treats the reclaimed water and uses it in all cycles) can save up to 90 percent. Recycling systems can be cost-effective due to savings in water, soap, energy for heating, and sewer fees. Two types of complex systems are 1) mixed media and 2) ultra filtration. The mixed media system consists of a filter containing plastic beads, anthracite coal and silica an activated carbon column and an ion exchange unit. It first filters out large particles such as lint, then smaller ones such as dirt. After the ion exchange unit removes organic material, the water is sent back to the wash cycle. This system is relatively low maintenance and is available as a packaged unit. It provides approximately 75 percent reuse of water. The second system uses settling, high-rate ultra-filtration, and fixed bed carbon adsorption processes that sends the used water through the carbon bed. Pretreatment with hydrated lime in dry powder form is used to assist the ultra-filtration treatment.

Multi-family housing complexes that have laundry rooms have been found to use less that 1/3 the water when compared to in-unit washers. Tax credits may be available for multi housing complexes and laundromats that replace older washers with new, low-water-use models. Find more information in this Laundry Wise Report.

KITCHEN EQUIPMENT

Kitchens, whether residential or commercial, typically include several water-using appliances, fixtures and equipment. There are many ways to save water in the kitchen. Look for WaterSense and EnergyStar labels, and consider the features described below. For more on commercial kitchens, see the Water Saving Technologies for Commercial Kitchens.

DISHWASHERS

Depending on user behavior and household size, modern, water-efficient dishwashers use less water than washing dishes by hand. Dishwashers can be the most water-efficient option if only operated when full and if dishes are not rinsed before loading. Look for Energy Star and Water Sense labels when choosing a dishwasher. Water-efficient models use an average of only four gallons of water per wash, 32-39 percent less than standard dishwashers, saving up to 1,000 gallons of water per year. See Energy Star Dishwashers

Commercial dishwashers vary in their water use from 2.5 to 8.0 gallons of water per minute, depending on the type of dishwasher. In a stationary rack machine, the dish racks remain in place while they are sprayed with cycles of wash and rinse water. In a conveyor dishwasher, the dishes are placed on a conveyor belt that passes through the machine as dishes are sprayed. The final rinse may include a chemical sanitizing agent that is mixed with water. Most modern dishwashers recirculate the final rinse water and use it for the first rinse of the next cycle. See Energy Star Commercial Dishwashers

GARBAGE DISPOSALS, STRAINERS, TROUGHS & SPRAY VALVES

Garbage disposals grind solid wastes into small particles so that they can be discharged into the sewer. The ground garbage passes into a chamber where it is mixed with water for disposal. Garbage disposals generally use five to eight gallons of water per minute, but have a relatively low duration of operation. Most commercial garbage disposals have solenoid valves that shut off the water when the disposal motor shuts off.

Replacing a garbage disposal with a garbage strainer reduces water use by as much as 40 percent. A recirculating stream of water passes over food waste in the strainer (which sits in the sink's drain) and washes soluble materials and small particles into the sewer, while leaving the large particles to be thrown away in the garbage. The strainer uses about two gallons per minute compared to the five-to-eight gallons per minute of the commercial disposals.

Commercial kitchens often use scraping troughs or conveyors to remove and carry food scraps and other waste to a garbage disposer before the plates go into the dishwasher. The scraping system uses a trough of water that flows at a rate of between five and 15 gpm to carry garbage to the disposer. Conveyors (generally for larger facilities) use water forced through several jets at a rate of three to five gallons per minute to rinse food particles. Recirculating systems that strain out the solids for disposal and return the water to the trough, reduce water use to between three and five gpm. A cost-effective method that uses no water is to manually scrape food particles into the garbage or a garbage strainer before loading plates into the dishwasher.

REFRIGERATORS, ICE MACHINES & ICE CREAM EQUIPMENT

Commercial refrigerators are usually water-cooled. Older units are often cooled with water in a single-pass fashion, wasting thousands of gallons per day. New units contain a closed system where a cooling water loop uses a heat exchanger that transfers heat from pipes containing a refrigerant, to pipes containing water. The heat disperses from the pipes by evaporative cooling. Smaller units, such as those found in residential settings, use an air-cooled condenser as their heat exchanger. In natural convection air-coolers, the air flows freely over the condenser, cooling the refrigerant inside. Forced convection air-coolers use fans to blow the air across the condenser coils. These systems use no water.

Ice machines are water wasters when they use single-pass cooling water to remove heat from the compressors and product. An 800 pound water-cooled ice machine uses an extra 1,300 gallons of water each day to cool the condenser. EPA Energy Star models are approximately 15 percent more energy-efficient and ten percent more water-efficient than their conventional counterparts. Flake ice is typically produced on a rotating evaporation drum. Ice is broken off the drum by an ice cutter and scraped to produce flakes that are thin, randomly shaped, and mostly white or cloudy. A typical water-cooled flake ice machine uses 20 gallons of water per 100 pounds of ice produced. Ice cube machines use more water than flake ice machines because they use warm water to wash over the frozen surface of the cube as it forms. The warm water dissolves and carries away minerals and other substances that would make the cube cloudy. This results in clear cubes made of frozen water that is purer than the source water. A typical air-cooled cube ice machine uses 30 gallons of water per 100 pounds of ice produced and 10-30 gallons two to three times a day to purge the system of minerals. Water cooled cube ice machines can use from 72 to 240 gallons for every 100 pounds of ice. See Energy Star Commercial Ice Machines

Ice cream and yogurt machines are water wasters when they use single-pass cooling water to remove heat from the compressors and product. A typical water-cooled ice cream or frozen yogurt machine uses 2 to 3 gallons per minute (or 1,200 gallons for every eight hours of operation) to cool the condenser whenever the unit is operating. Better alternatives are a closed cooling water loop or an air-cooled model. Air-cooled models use no water. A closed cooling water loop uses a heat exchanger, which transfers heat from pipes containing a refrigerant to pipes containing water. The heat disperses from the pipes by evaporative cooling.

Dipper wells are used for rinsing and holding ice cream scoopers and other utensils. They typically use constantly running water for sanitary purposes. Low-flow systems conserve water, as do hands-free systems that use foot or knee pedals to turn the water on only when needed. Simply turning the flow down or even off during slow periods can save thousands of gallons of water per year.

COOKING EQUIPMENT

A combi-oven is an oven with three functions: convection, steam and combination cooking, thereby replacing stand-alone convection ovens and boiler-steamers. In the convection mode, the oven circulates dry heat which is ideal for pastries and breads. The steam mode injects water into the oven to poach fish, rice, vegetables, and other foods. The combi-oven typically uses nine gallons of water per hour compared to the 40 gallons per hour used by boiler-steamers. Another advantage of a combi-oven is the combination mode, which uses both dry heat and steam to maintain exact humidity levels, providing more control of the moisture levels in food, and cooking food up to 30 percent faster.

Conventional woks run water continuously over the stove to prevent over-heating from the accumulated heat under the cook-top. Waterless or (air-cooled) woks allow the hot air to escape from two small air gaps that insulate the wok stove elements. This eliminates the need to use water as a cooling agent and therefore results in a 100 percent water savings.

Steamers are usually very water intensive, especially the pressureless, boiler-style steamers. Boiler-steamers are connected to a water source and constantly drain water to prevent pressure build-up from the steam. They can consume up to 40 gallons of water per hour, averaging about 175,000 gallons per year. Models with the EPA EnergyStar certification use about ten percent less water, or 30 gallons per hour.

A boilerless steamer (sometimes called "connectionless steamer") is much more water efficient than one that constantly drains water. In a boilerless steamer, the only water used is the amount needed to produce steam. Water is added manually to a reservoir in the bottom of the unit that has its own heating element and is drained at the end of the day. Since there is no connection to a water source, the boilerless steamer uses only about one to two gallons of water per hour, with a potential water savings of 174,500 gallons per year.

IRRIGATION & WATER HARVESTING

In Arizona, up to 70 percent of residential water is used on the landscape. Water used to irrigate landscapes is often wasted due to inefficient irrigation systems. Significant water use reductions can be achieved through the use of new and emerging irrigation technologies.

IRRIGATION EQUIPMENT

An irrigation master valve is typically installed at the point of connection to the water source. The master valve opens whenever any station is watering and closes when no station valves are on. A flow sensor installed just after the master valve detects leaks based on the programmed parameters. When used with a controller that can read a flow sensor, the controller will shut down a station valve when a leak is detected, and then move on to the next station in the program sequence. If connected to a central control system it will send a message back to the central computer about the problem and its location. Although not commonly used in the residential setting, they would provide a safety net for home irrigation systems, preventing uncontained or unnoticed leaks from flowing continuously until discovered.

Sprinkler heads are nozzles or devices, which may or may not rotate, that distribute water under pressure through the air. Sprinklers that spray (often called "spray heads"), do not rotate. They apply water over a circular area in a fan-shaped stream. They have a high application rate, meaning that they they discharge a large volume of water in a relatively short amount of time (at an average rate of 1.4 inches per hour), which can lead to increased evaporation and to run-off. By contrast, rotor sprinkler heads emit a single or multi stream of water that rotates back and forth in a circular pattern. Rotor heads have a lower application rate (at an average rate of .7 inches per hour) and apply water more uniformly than spray heads. When located on a slope, a sprinkler head in the lowest places sometimes continue to flow for a few minutes after the sprinkler turns off. This phenomenon is called "low head drainage" and can be prevented by installing anti-drain check valves.

Bubbler heads are typically used in planters, tree wells, or specialized landscape applications where deep localized watering is preferable. Water from the bubbler head comes through small orifices and either runs down from the emission device or spreads a few inches in an umbrella pattern. Bubbler emission devices are equipped with single or multiple port outlets.

Drip irrigation is a system of valves, tubing and emitters that allows water to drip slowly at the root zone of each plant. These systems are efficient because they water only the root zone and eliminate run-off, water waste, and excessive evaporation. Various sizes of emitters, including multi-outlet emission devices, allow for the application of different gallons per hour in order to match a plant's water requirements. Emitter size can be increased as a plant grows or plugged if a plant dies or no longer needs supplemental irrigation.

Irrigation controllers or timers are programmed to turn an irrigation system on and off based on a preset schedule. Recent advances in controllers have made them even more efficient. "Smart" controllers sometimes called evapotranspiration (ET)- based controllers, automatically adjust the watering schedule according to weather-based information, such as temperature and humidity. (ET is the amount of water lost from the soil through evaporation plus the plant's water loss, both of which are dramatically affected by weather conditions.) This information may be either pre-programmed into the controller based on historic data, or adjusted daily based on a signal from a local weather station or satellite. Smart controllers can reduce irrigation water use by 20-40 percent. Some controllers have sensors (shut-off devices) attached so that watering is temporarily stopped due to rain, wind, high soil moisture or freezing temperatures.

Rain sensors are designed to stop irrigation in response to a specific amount of rainfall, such as 1/8 to one inch. When the sensors dry out (in a day or two), they turn the power to the valves back on. Rain sensors are mounted outside in an open area and are easy to install. They are available in both wireless and hard-wired versions and are connected to the shutoff valve on the common line of the automatic-watering system. Some states and many cities mandate the use of rain sensors in all new sprinkler systems.

Soil moisture sensors measure the level of moisture in the soil and are frequently used in agriculture, on golf courses and in lawns. They are sometimes used in planting beds that have drip irrigation, however, more sensors are needed if plants have differing water needs and root depths. Soil moisture sensors stop irrigation if the soil is wet and resume irrigation when the soil is dry. A good system allows you to set the moisture level at which you want to stop and start irrigation. There are a variety of soil moisture sensor systems on the market at different price levels.

Wind sensors turn off irrigation valves when the wind reaches a preset speed, e.g. 12 – 35 mph. These are more commonly used with automatic sprinkler systems to reduce evaporation and prevent the wind from blowing the spray away from the targeted areas.

Freeze sensors automatically turn off irrigation valves when the temperature drops to a pre-set level, e.g., close to freezing. These are typically used in regions where irrigation systems are not decommissioned for the winter, yet still have a chance of frost.

Sensors are sometimes combined into one unit to eliminate the need for separate sensors and installations. A combination unit that includes wind, rain and freeze sensors is sometimes called a "mini weather station" or "complete weather station." The sensors automatically shut off the irrigation system if there is too much rain or wind, or if it is too cold to irrigate They then reset the system when conditions are favorable.

Installing a meter or sub-meter dedicated to measuring outdoor water usage can reduce sewer fees. Sub-meters quantify the amount of water used for landscaping and therefore not returned to the sewer. If you are unfamiliar with how to read your meter, refer to Reading Your Water Meter.

RAINWATER & GRAY WATER HARVESTING

Rainwater and Gray Water Harvesting are effective methods that can reduce the use of drinking water for landscape irrigation. These methods are even more beneficial when they are coupled with low-water-use and desert adapted plants. You can read more about these topics on our Landscaping page.

A rainwater harvesting system is appropriate for large-scale landscapes such as parks, schools, commercial sites, parking lots and apartment complexes, as well as small-scale residential landscapes. Simple rainwater harvesting systems include gutters, downspouts and yard contouring to direct rainfall to plants. More complex systems store rainfall in rain barrels or cisterns, some equipped with filters and pumps.

Gray water, the wastewater generated from domestic processes such as laundry and bathing (not from kitchen sinks or toilets), comprises 50-80 percent of residential wastewater. Gray-water systems typically direct gray water for irrigation use. Some communities require gray-water systems in new construction, and rebates are sometimes available for installing a gray-water system as a retrofit. All residential systems must follow the Arizona Department of Environmental Quality guidelines.

POOLS & WATER FEATURES

Swimming pools, decorative ponds, fountains and waterfalls can consume high volumes of water through evaporation. The amount of evaporation is related to outside temperatures, wind velocity and other factors. For example, in Phoenix and Tucson, the average evaporation rate is approximately six feet per year, most of which occurs in summer. Other sources of water loss in addition to evaporation are filter backwashing, pool draining, splashing, and leaks. By installing a submeter, variations in water use can be identified, such as unusually high water use caused by leaks, cracks or tears in liners. The meter will help identify abnormal water usage so it can be remedied as soon as it is discovered.

POOLS

A variety of methods can help reduce pool water use. To prevent water lost from unnecessary backwashing, timers can be installed to standardize the backwash cycle duration and frequency to meet actual needs. Using cartridge filters instead of sand or diatomaceous earth can reduce water use by half because they do not need to be backwashed as often. Backwashing a sand filter will use between 250 and 400 gallons of water, and the same amount to refill your pool, e.g. 800 gallons. A filter installed between the sand filter and the main return line allows clean water to be returned to the pool and not be wasted when backwashing. For more water conservation tips, see ADWR Pools & Spas Conservation Fact Sheet

DECORATIVE FOUNTAINS, PONDS & WATERFALLS

Ponds, fountains and waterfalls should recirculate water by having a reservoir pan to hold water and a pump that circulates it. Water may need to be added several times a week depending on the rate of evaporation, unless the feature has a dedicated line and float. Some communities have regulations on recirculated water in play fountains. New products and kits are becoming available that collect and store rainwater for use in fountains, ponds or waterfalls. The water storage units are usually below ground and a pump recirculates the collected rainwater through the water feature systems. Some communities have ordinances that restrict the type and size of water features to help reduce water loss from evaporation.

CAR WASH & OUTDOOR CLEANING

COMMERCIAL CAR WASHES

If you own or operate a commercial car wash, see Water Saving Technologies for Commercial Car Washes.

Of the two main types of commercial car washes, conveyor or in-bay, the conveyor system uses less water. Conveyor systems (where the car moves through a series of cleaning operations) use approximately 44 gallons of water per vehicle and lose 17 percent of that to evaporation and carryout. In-bay systems (where washing equipment is rotated around a stationary vehicle) use approximately 72.5 gallons per vehicle and lose 33 percent of the water to evaporation and carryout. Regardless of the type of car wash, recirculating (recycling) systems are an important part of any water-wise car wash. These systems take soapy run-off water, clean it, and send it back for use on another vehicle.

Self-serve vehicle washes use less water than commercial car washes or washing vehicles at home. Typically, self-serve vehicle car washes have an equipment room where water is mixed with cleaning agents which then come out of a wand or brush. Because customers are unsupervised, they often discard oil and debris in the wash troughs making water recycling difficult. Self serve car washes can save water by using pressure nozzles with flow-rates less than three gpm, deionization equipment rather than water-softening or reverse osmosis systems for "spot-free" rinse options, and reuse of expelled water if reverse osmosis systems are in place. The expelled water could be used for the wash cycles or to irrigate landscapes.

WASHING VEHICLES AT HOME


Washing a vehicle at home can use 80-140 gallons of water, which is more than the amount used at a commercial car wash! If this option is chosen, using an automatic shutoff nozzle will greatly reduce water waste. Also, washing vehicles on grass or gravel prevents water from running down the street (where much of it evaporates and the rest picks up contaminants) and into storm drains (where it delivers the contaminants). See: Water Saving Tips for Washing your Vehicles

OUTDOOR CLEANING EQUIPMENT

Automatic shut-off nozzles have a lever on the back which, when depressed, allows water to flow out of the hose. When released, the water stops, thereby preventing water flow when it is not needed.

A water broom is a type of power washer. It uses air and water pressure to clean surface areas, and is excellent for “light-duty” cleaning such as pool decking and sidewalks.Water brooms use about two gallons of water per minute (gpm) compared to the 8-18 gpm used by a traditional hose nozzle. Using a water broom instead of a hose to clean surface areas can reduce water use by more than 75 percent as well as require less labor and time. Water brooms shouldn’t be used for heavy duty application such as removing bird droppings, since the broom would have to be run several times over the same spot.

LABORATORIES & MEDICAL FACILITIES

Most uses of water in laboratories are relatively small, and generally have limited potential for water conservation. Uses include water for mixing solutions, washing glassware and other equipment, and for sterilizers. The EPA and Department of Energy recommend that laboratories, especially those in large hospitals, look at the potential for generating and collecting non-potable, clean water such as the discharge from once-through cooling systems or reverse osmosis.

For additional information see ADWR Medical & Laboratory Conservation Fact Sheet. For other water uses in medical facilities such as for kitchens. laundry, irrigation, heating & cooling, and plumbing, see the sections above.

LABORATORY FACILITIES

Low-flow aerators are extremely effective at reducing water use. Aerators can be attached to older, high-volume faucets to reduce their flow rate to 2.5 gpm or less. Aerators add air to the flow stream, resulting in a spray-like flow, while maintaining water pressure. Some aerators can reduce water flow to .5 gpm or less, at a fraction of the costs of replacing faucets. The rated flow of an aerator is imprinted on its side.

Traditional hood exhaust systems use water to create a vacuum. Water-saving dry vacuums use air pressure instead of water to create a vacuum. Exhaust hoods may include fume scrubbers (systems that remove fumes and substances from the exhaust before releasing it to the atmosphere). These fume scrubbers use large quantities of water, and therefore should be equipped with recirculating systems.

X-ray, MRI and CT equipment that uses film imaging are water- intensive. Water-conserving imaging equipment use digital technologies which allow the images to be displayed on a screen and saved to a hard-drive. Where film imaging cannot be avoided, use a self-contained image-developing unit, called a "mini-lab," to process the film. These units use chemicals instead of water in the development process and dispose of the spent chemicals in a reservoir adjacent to the mini-lab. Recirculating systems should be used for large wet-chemistry and water-rinse x-ray technologies.

Sterilizers frequently use running streams of water to cool steam from the autoclaves, then discharge the water to the sewer. Sterilizers with recirculation systems (either built-in or retrofitted) use the water multiple times before discharging it into the sewer. A water-saving retrofit kit for autoclaves (pressure chambers for producing chemical reactions) monitors the temperature of the water coming out of the autoclave and adds cold water only when the temperature is greater than 140ºF. Recirculating chiller units are recommended for cooling lab equipment (such as large dry vacuum systems, sterilizers, automated analyzers, etc.), rather than using a stream of water and once-through cooling systems.